Review: Electric field driven pumping in microfluidic device

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfluidic device for electric field-driven single-cell capture and activation.

A microchip that performs directed capture and chemical activation of surface-modified single cells has been developed. The cell capture system is comprised of interdigitated gold electrodes microfabricated on a glass substrate within PDMS channels. The cell surface is labeled with thiol functional groups using endogenous RGD receptors, and adhesion to exposed gold pads on the electrodes is dir...

متن کامل

Droplet Formation in a T-junction Microfluidic Device in the Presence of an Electric Field

In this work, the effect of applying an electric field on droplet formation in a T-junction microfluidic device is examined by simulations based on a recent technique known as lattice Boltzmann method (LBM). The electric field is applied in the main channel just beyond the confluence of the continuous and dispersed phases. A combined electrohydrodynamics-multiphase model that can simulate the f...

متن کامل

RNA Extraction from a Mycobacterium under Ultrahigh Electric Field Intensity in a Microfluidic Device

Studies of transcriptomes are critical for understanding gene expression. Release of RNA molecules from cells is typically the first step for transcriptomic analysis. Effective cell lysis approaches that completely release intracellular materials are in high demand especially for cells that are structurally robust. In this report, we demonstrate a microfluidic electric lysis device that is effe...

متن کامل

Electric Field Driven Torque in ATP Synthase

FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to...

متن کامل

Design of pressure-driven microfluidic networks using electric circuit analogy.

This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ELECTROPHORESIS

سال: 2017

ISSN: 0173-0835,1522-2683

DOI: 10.1002/elps.201700375